
Testing GenAI
apps in Go

DevTools Day Bengaluru
Jan 18th, 25

You can find me as @mdelapena everywhere

About me

Manuel de la Peña
Staff Software Engineer @ Docker
Computer Science degree, Master in Software Engineering

- Testcontainers Go maintainer since 2020

- Engineering Productivity at Elastic Observability

- QA Tech lead at Liferay Cloud

- Core Engineer at Liferay

- In OSS since 2011

- Hitting keyboards since 1994

- First time in India!!!

I’m STILL
learning

about
GenAI/AI/ML

I’m a software developer in
love with software quality:

products & workflows.

01. GenAI in today’s software

02. The Cloud analogy

03. Gen AI Tooling in Go

04. Testing approach to GenAI

05. Conclusions

What we are going to see today:

1. GenAI in today’s software

FOMO: Fear Of Missing Out!

Every day there is a new company offering AI services, exposing their models for you to consume them, and
new papers are published every day.

➔ OpenAI

➔ Google

➔ Anthropic

➔ Mistral

➔ …

GenAI in Today’s software

The M/L + AI + Data (MAD) landscape
Sources:

https://www.linkedin.com/pulse/ai-landscape-2024-trends-top-startups-leta-capital-orqpe

https://mad.firstmark.com

2011 logos
In 2024

1416
In 2023

578
Newcomers in 2024

https://www.linkedin.com/pulse/ai-landscape-2024-trends-top-startups-leta-capital-orqpe
https://mad.firstmark.com/

LLMsLangchain (Python, Node), Langchain4j (Java),
LlamaIndex, and many more tools:

- Allow you to talk to LLMs
- Design prompts
- Create chats, tools and agents
- Talk to Vector databases

Depending on the model you talk to, you can use it
for:

- Image recognition
- Text to text generation
- Text to image/video/audio
- Multimodal generation
- …more in 3,2,1

Develop with LLMs

LLMs SDKs

A GenAI application

2. The Cloud analogy

GCloud, AWS, AzureHow it works

- Our company uses a given Cloud provider
- We setup that Cloud’s SDKs into your project
- We configure the credentials
- We start coding…

Seems pretty similar to the LLM approach, doesn’t
it?

But how do you test these applications?

Develop with the Cloud

Cloud SDKs in Go

Your application

- No tests, my code is perfect!
- Local Service emulating a given Cloud service
- Test environment in the Cloud provider

- Per team?
- Per developer?
- Shared across the company?
- How long does it take to have them?
- Do you prune outdated resources?
- Do you measure costs?

- Do you know Localstack, Google Cloud and
Azurite emulators?

- You can run a Docker container
representing those cloud services.

- They work like a charm!

Test Environments

Testing Cloud applications

Cloud SDKs in Go

Your application

Testing Cloud applications with emulators

Go tests
Cloud Go
packages

SNS S3

Test results

Localstack
AWS Services

Go application

AWS Services

Lambdas

GCloud Emulators
GC Services

Azurite
Azure Services

DynamoDB

3. Gen AI Tooling in Go

Go implementation for Langchain: https://github.com/tmc/langchaingo

Community driven project, led by Travis Cline.

➔ Generate completions from an LLM (OpenAI, Anthropic, Google…)

➔ Calculate embeddings for words, texts, images…

➔ Talk to Vector databases to look for similar/relevant documents to enrich LLM responses
(Retrieval Augmented Generation)

◆ Chroma, Milvus, pgVector, Pinecone, Qdrant, Weaviate…

➔ 3 DEMOS

Langchaingo

https://github.com/tmc/langchaingo

Create a completion from an LLM,
using a streaming function so that
the answer is produced at the
moment it’s produced by the LLM.

It comes with APIs to abstract the
LLM creation and obtain if from
multiple providers: Google, OpenAI,
Mistral, LlamaFile:

- The completion code would
be exactly the same.

https://github.com/mdelapenya/ge
nerative-ai-with-testcontainers/tre
e/main/02-streamin/main.go

// llm is llama3.2:3b

ctx := context.Background()

completion, err := llms.GenerateFromSinglePrompt(

 ctx, llm, "Give me a detailed and long explanation of why

Testcontainers for Go is great",

 llms.WithTemperature(0.8),

 llms.WithStreamingFunc(func(ctx context.Context, chunk []byte)

error {

 fmt.Print(string(chunk))

 return nil

 }),

)

if err != nil {

 log.Fatal(err)

}

langchaingo:
completions

https://github.com/mdelapenya/generative-ai-with-testcontainers/tree/main/02-streaming/main.go
https://github.com/mdelapenya/generative-ai-with-testcontainers/tree/main/02-streaming/main.go
https://github.com/mdelapenya/generative-ai-with-testcontainers/tree/main/02-streaming/main.go

Using the right model, you can
generate the embeddings for a text.

Embeddings are dense numerical
representation (vectors) of words,
phrases or concepts, that can be
used to calculate similarity between
them.

https://github.com/mdelapenya/ge
nerative-ai-with-testcontainers/tre
e/main/06-embeddings/main.go

// llm is all-minilm:22m

embedder, err := embeddings.NewEmbedder(llm)

if err != nil {

 return fmt.Errorf("embedder new: %w", err)

}

docs := []string{

 "Testcontainers is a Go package that provides lightweight,

throwaway instances of common databases, web browsers, or anything

else that can run in a Docker container",

 "Docker is a platform designed to help developers build, share,

and run container applications.",

}

vecs, err := embedder.EmbedDocuments(context.Background(), docs)

if err != nil {

 log.Fatal("embed query", err)

}

langchaingo:
embeddings

https://github.com/mdelapenya/generative-ai-with-testcontainers/tree/main/06-embeddings/main.go
https://github.com/mdelapenya/generative-ai-with-testcontainers/tree/main/06-embeddings/main.go
https://github.com/mdelapenya/generative-ai-with-testcontainers/tree/main/06-embeddings/main.go

Retrieval and Augmented
Generation.

It’s possible to pass a vector of
embeddings to a vector database,
and leverage the power of these
systems to obtain relevant
documents to enrich the response
from the LLM.

https://github.com/mdelapenya/ge
nerative-ai-with-testcontainers/tre
e/main/07-rag/main.go

// llm is all-minilm:22m

embedder, err := embeddings.NewEmbedder(llm)

if err != nil {

 log.Fatalf("embedder new: %w", err)

}

store, err := weaviate.NewStore(context.Background(), embedder)

if err != nil {

 return fmt.Errorf("weaviate new store: %w", err)

}

// ingest relevant documents in the store

if err := ingestion(store); err != nil {

 log.Fatalf("ingestion: %w", err)

}

// similarity search

relevantDocs, err := store.SimilaritySearch(context.Background(),

"What is my favorite sport?", 1, optionsVector...)

if err != nil {

 log.Fatalf("similarity search: %w", err)

}

langchaingo:
RAG

https://github.com/mdelapenya/generative-ai-with-testcontainers/tree/main/07-rag/main.go
https://github.com/mdelapenya/generative-ai-with-testcontainers/tree/main/07-rag/main.go
https://github.com/mdelapenya/generative-ai-with-testcontainers/tree/main/07-rag/main.go

How did those
examples

work?

Dockerised workflow

Go application langchaingo

Chat Model
Ollama

Embeddings Model
Ollama

Result

Testcontainers Go
Create Containers

Go application

Test Time Dependencies

Docker Platform

VectorDB
Weaviate

PULL Models
Ollama

Inference Engine: https://github.com/ollama/ollama

Like Docker, but for running models! Wrapper of Llama.cpp written in Go

➔ ollama pull $MODEL

➔ ollama run $MODEL

➔ It has Modelfiles for customising models (temperature, system messages…)

➔ It has a native app for Linux, Mac and Windows…

➔ … or you can run it as a Docker container

◆ used in the demos, thanks to
https://github.com/mdelapenya/dockerize-ollama-models/

◆ https://hub.docker.com/u/mdelapenya

➔ Ollama has native access to the GPUs of the host, which is key for speed.

Ollama

https://github.com/ollama/ollama
https://github.com/mdelapenya/dockerize-ollama-models/
https://hub.docker.com/u/mdelapenya

An Open Source Go package (MIT license) providing
developer-friendly API’s on top of the Docker
engine.

https://github.com/testcontainers/testcontainers
-go

- Start, stop, terminate containers and networks
- Wait for containers on custom conditions
- Lifecycle hooks to inject custom code

(Pre/Post)
- Copy files to/from containers
- Garbage collection of Docker resources

Testcontainers Go

Go package: docker/docker

Your Go app

Go package: testcontainers-go

https://github.com/testcontainers/testcontainers-go
https://github.com/testcontainers/testcontainers-go

Creates a container from an image,
exposing the container port in a
random free port in the host.

* Wait strategies live in the “wait”
package.

pgCtr, err := testcontainers.GenericContainer(ctx,

testcontainers.GenericContainerRequest{

 ContainerRequest: testcontainers.ContainerRequest {

 Image: "postgres:14",

 ExposedPorts: []string{"5432/tcp"},

 WaitingFor: wait.ForLog("database system is ready to accept

connections").WithOccurrence(2),

 },

 Started: true,

})

if err != nil {

 log.Print("Container failed to start")

 return

}

defer func() {

 if err := testcontainers.TerminateContainer(ctx, pgCtr); err != nil {

 log.Print("Container failed to start")

 return

 }

}

// test my stuff

GenericContainer

Go packages providing access to the most used
technologies:

- Relational DBs: Mysql, Postgres, …
- Vector DBs: Weaviate, Chroma, Qdrant,

Milvus…
- Non Relational DBs: Elasticsearch, Redis,

MongoDB, Neo4j, Opensearch…
- Cloud Emulators: Localstack, Google Cloud,

Azurite
- Inference Engines: Ollama
- Keycloak, OpenFGA, Vault…

Go packages: testcontainers-go/modules

Testcontainers Go: modules

Go package: testcontainers-go

Your Go app

Ready-to-use Go packages
wrapping GenericContainer with
APIs specific to the underlying
technology.

Package: “…/modules/postgres”

https://testcontainers.com/modules

// pgCtr, err := postgres.Run(ctx, "postgres:14")

pgCtr, err := postgres.Run(ctx, "postgres:14",

 postgres.WithDatabase("my-database"),

 postgres.WithUsername("gopher"),

 postgres.WithPassword("p4ssw0rd!"),

 postgres.WithInitScripts("testdata/sql/init.sql"),

 postgres.BasicWaitStrategies(),

)

if err != nil {

 log.Print("Container failed to start")

 return

}

defer func() {

 if err := testcontainers.TerminateContainer(ctx, pgCtr); err != nil {

 log.Print("Container failed to start")

 return

 }

}

// test my stuff

conn, err := pgCtr.ConnectionString(ctx, "ssl=disabled")

With modules!

https://testcontainers.com/modules

A module exists! https://testcontainers.com/modules/ollama/?language=go

Since v0.35.0, it’s possible to interact with the local Ollama process as it was a container, honoring the
create/start/stop/terminate container lifecycle.

Remember Ollama?

ollamaContainer, err := ollama.Run(ctx, "ollama/ollama:0.5.4")

if err != nil {

 log.Printf("failed to start container: %s", err)

 return

}

code, reader, err := ollamaContainer.Exec(ctx, []string{"ollama", "pull", "all-minilm"})

https://testcontainers.com/modules/ollama/?language=go

4. Testing approach to GenAI

Could Ollama
be considered

the
Localstack for

LLMs?

Please remember…

Go application langchaingo

Chat Model
Ollama

Vector DB
Weaviate

Result

Testcontainers Go
Create Containers

Go application

Runtime Dependencies

Embeddings Model
Ollama

PULL Models
Ollama

Demo 1:
strings

comparison
https://github.com/mdelapenya/generative-ai-with-testcontainers/blob/main/08-testing

https://github.com/mdelapenya/generative-ai-with-testcontainers/tree/main/08-testing#how-to-test-this-1-string-comparison

Demo 2:
cosine similarity

https://github.com/mdelapenya/generative-ai-with-testcontainers/blob/main/08-testing

https://github.com/mdelapenya/generative-ai-with-testcontainers/tree/main/08-testing#how-to-test-this-2-embeddings

➔ AKA “LLM-as-a-Judge” (https://eugeneyan.com/writing/llm-evaluators/).

➔ Evaluate the quality of another LLM’s response to an instruction or query.

➔ Define a very strict System Prompt:

◆ Provide Instructions: response format,

◆ Provide reference examples

➔ Define a very strict User Prompt:

◆ Provide a detailed format: ### question ### answer ### reference ###.

◆ Provide a reference (e.g. in the test as an expectation)

◆ Structured output, semantic/style constraints

● Respond with “yes” or “no” including the reasoning.

Enter Evaluators

https://eugeneyan.com/writing/llm-evaluators/

Adding an Evaluator

Go application langchaingo

Chat Model
Ollama

Vector DB
Weaviate

Result

Testcontainers Go
Create Containers

Go application

Runtime Dependencies

Embeddings Model
Ollama

Evaluator Model
Ollama

PULL Models
Ollama

Demo 3:
using an Evaluator

https://github.com/mdelapenya/generative-ai-with-testcontainers/blob/main/08-testing

https://github.com/mdelapenya/generative-ai-with-testcontainers/tree/main/08-testing#how-to-test-this-3-evaluator-agents

➔ Testcontainers Go + Ollama: a really powerful and easy-to-use local development experience.

➔ Using specialised models with a very strict system prompt helps us in identifying if the model our
application is using responds correctly:

◆ We can automate the test execution

◆ Adjust our application based on that: e.g. choosing a different model, vector store, or even
modifying the metrics used to classify/correlate the responses at test time.

➔ Each model has its own idiosyncrasies, so models from different providers can produce different
responses.

◆ E.g. Ollama + Llama3.2:3b can excel in one task, but its response could be different than
using OpenAI + o4.

➔ Integration tests will give you confidence so you can make progress with speed, but you still need
to test against the real thing, e.g. with OpenAI.

◆ Run lots of integration tests but don’t forget to add some E2E tests.

Considerations

5. Conclusions

➔ We have very powerful tools in the Go ecosystem to work with LLMs

◆ Langchaingo is becoming the reference for that in Go

➔ We can use local models to interact with LLMs thanks to Ollama

◆ Pull and Run models, even from Huggingface!

◆ Replicate with enough confidence what external services can do.

➔ Testcontainers Go can provide the runtime dependencies in a programmatic manner,
enabling a local development experience that comes with increased trust and
development speed.

➔ Evaluators with a very consistent system prompt can help in enhancing your testing
activities.

Conclusions

शुक्रिया
Bengaluru!!

DevTools Day Bengaluru
Jan 18th, 25

